Taken from:

Forensic Science: An Introduction, Second Edition

Forensic Science: From the Crime Scene to the Crime Lab, Third Edition

Criminalistics: An Introduction to Forensic Science, Eleventh Edition
by Richard Saferstein
To my wife, Gail, pillar of my life
Contents

Preface ... xi Handbook of Forensic Services—FBI xiv
Acknowledgments xii Next Generation Science Standards
About the Author......................... xiii Overview xv

Chapter 1

Introduction ... 2
Definition and Scope of Forensic Science 4
History and Development of Forensic Science 6
Crime Laboratories 14
The Functions of the Forensic Scientist 24
Exploring Forensic Science on the Internet. 33
Chapter Review 36
Review Questions 37
Application and Critical Thinking 40
Laboratory Experiments 44
Endnotes ... 45

Chapter 2

The Crime Scene 46
Physical Evidence and the Crime Scene 48
Preserving and Recording the Crime Scene 49
Dealing with Physical Evidence 56
Ensuring Crime-Scene Safety 68
Chapter Review 70
Quick Lab: Crime-Scene Sketch 71
Review Questions 71
Application and Critical Thinking 74
Laboratory Experiments 75

Chapter 3

Physical Evidence 76
Common Types of Physical Evidence 78
The Examination of Physical Evidence 80
The Significance of Physical Evidence 85
Forensic Databases 89
Chapter Review 98
Review Questions 99
Application and Critical Thinking 101
Laboratory Experiments 101
Endnotes ... 103
Contents

Chapter 4
Death Investigation .. 104
Role of the Forensic Pathologist .. 106
Role of the Forensic Anthropologist 123
Role of the Forensic Entomologist
 Chapter Review .. 134
 Review Questions ... 136
 Application and Critical Thinking 138
 Laboratory Experiments ... 140

Chapter 5
Properties of Matter and the Analysis of Glass 142
Properties of Matter .. 144
The Nature of Matter .. 147
Theory of Light ... 152
Physical Properties of Matter ... 156
Forensic Analysis of Glass
 Chapter Review .. 163
 Quick Lab: Glass and Density .. 176
 Review Questions ... 177
 Application and Critical Thinking 180
 Laboratory Experiments ... 182
 Endnotes .. 183

Chapter 6
Drugs .. 184
Drug Dependence ... 187
Types of Drugs ... 191
Drug-Control Laws .. 208
Forensic Drug Analysis
 Collection and Preservation of Drug Evidence 233
 Chapter Review .. 234
 Quick Lab: Chromatography ... 235
 Quick Lab: Drug Screening Test 236
 Quick Lab: What Is the White Powder?
 Review Questions ... 238
 Application and Critical Thinking 240
 Laboratory Experiments ... 242
 Endnotes .. 243
Chapter 13

Trace Evidence II:
Metals, Paint, and Soil

Forensic Analysis of Trace Elements ... 492
Forensic Examination of Paint .. 501
Forensic Analysis of Soil ... 513
 Chapter Review ... 522
 Review Questions .. 523
 Application and Critical Thinking .. 524
 Laboratory Experiments ... 525
 Endnotes .. 527

Chapter 14

Forensic Aspects of
Fire Investigation .. 528

Forensic Investigation of Arson .. 530
The Chemistry of Fire ... 530
Searching the Fire Scene ... 540
Collection and Preservation of Arson Evidence 543
Analysis of Flammable Residues .. 545
 Chapter Review ... 550
 Review Questions .. 551
 Application and Critical Thinking .. 553
 Laboratory Experiments ... 555
 Endnotes .. 557

Chapter 15

Forensic Investigation
of Explosions .. 558

Explosions and Explosives .. 560
Collection and Analysis of Evidence of Explosives 568
 Chapter Review ... 576
 Review Questions .. 577
 Application and Critical Thinking .. 579
 Laboratory Experiments ... 580
 Endnote .. 581
Chapter 16

Fingerprints ... 582
- History of Fingerprinting 584
- Fundamental Principles of Fingerprints . 587
- Classification of Fingerprints 593
- Automated Fingerprint Identification Systems . 594
- Methods of Detecting Fingerprints 599
- Preservation of Developed Prints 607
- Digital Imaging for Fingerprint Enhancement 609
 - Chapter Review 612
 - Quick Lab: Fingerprinting 613
 - Review Questions 614
 - Application and Critical Thinking 616
 - Laboratory Experiments 618
 - Endnotes 619

Chapter 17

Firearms, Tool Marks, and Other Impressions .. 620
- Bullet and Cartridge Comparisons 622
- Automated Firearms Search Systems 631
- Gunpowder Residues 635
- Primer Residues on the Hands 639
- Serial Number Restoration 645
- Collection and Preservation of Firearms Evidence . 646
- Tool Marks 648
- Other Impressions 651
 - Chapter Review 660
 - Quick Lab: Toolmarks 661
 - Review Questions 662
 - Application and Critical Thinking 664
 - Laboratory Experiments 665
 - Endnotes 669

Chapter 18

Document Examination 670
- The Document Examiner 672
- Handwriting Comparisons 672
- Typescript Comparisons 679
- Alterations, Erasures, and Obliterations 681
- Other Document Problems 688
 - Chapter Review 692
 - Quick Lab: Handwriting Comparison 693
 - Review Questions 694
Contents

Application and Critical Thinking .. 696
Laboratory Experiments ... 697
Endnotes .. 699

Chapter 19

Computer Forensics .. 700
From Input to Output: How Does the Computer Work? 703
Putting It All Together ... 706
Storing and Retrieving Data .. 707
Processing the Electronic Crime Scene 710
Analysis of Electronic Data ... 715
Forensic Analysis of Internet Data .. 722
Forensic Investigation of Internet Communications 725
Chapter Review ... 730
Review Questions ... 732
Application and Critical Thinking .. 734
Endnotes .. 735

Chapter 20

Mobile Device Forensics .. 736
Forensic Challenges: Mobile Devices as Small Computers—Sort Of .. 740
Extracting Useful Data: The Differences in Various Types of Mobile Devices .. 743
Analyzing Mobile Devices: Finding Forensically Valuable Artifacts .. 747
Hybrid Crime Assessment: Fitting the Mobile Device into the Digital Forensic Investigation .. 749
Chapter Review ... 752
Review Questions ... 753
Application and Critical Thinking .. 755
Further References ... 755

Chapter 21

Careers in Forensic Science .. 756
Disciplines in Forensic Science .. 758
College Courses in Forensic Science .. 763

Index .. 767
Photo Credits .. 786
Preface

The level of sophistication that forensic science has brought to criminal investigations is awesome. But one cannot lose sight of the fact that, once all the drama of a forensic science case is put aside, what remains is an academic subject emphasizing science and technology. It is to this end that this third edition of *Forensic Science: An Introduction* is dedicated.

This high school edition follows the tradition, philosophy, and objectives of my introductory college text, *Criminalistics: An Introduction to Forensic Science*, which is in its eleventh edition. In creating this introductory text, every chapter of the college text was examined to improve the clarity of the narrative. This improvement has been accomplished by presenting the science of forensics in a straightforward and student-friendly format. Topics have been rearranged to better integrate scientific methodology with actual forensic application. The reader is offered the option of delving into the more difficult technical aspects of the book by going into the “Inside the Science” features in some chapters, an option that can be bypassed without detracting from a basic comprehension of the subject of forensic science.

Only the most relevant scientific and technological concepts are presented to the reader, so that the subject is not watered down with superfluous discussions that are of no real significance to current forensic science practices. It is the author’s belief that, by learning in an interactive environment using the Internet, the reader will be a more motivated and active participant in the learning process. The text is accompanied by a companion website that provides additional exercises, text information, and MyCrimeLab: WebExtras. The latter serve to expand the coverage of the book through video presentations and MyCrimeLab: WebExtras that enhance the reader’s understanding of the subject’s more difficult concepts.

One of the constants of forensic science is how frequently its applications become front-page news. Whether the story is sniper shootings or the tragic consequences of the terrorist attacks of 9/11/01, forensic science is at the forefront of the public response. In order to merge theory with practice, a significant number of actual forensic Case Files are included in the text. The intent is for all the case illustrations to capture the interest of the reader and to move forensic science from the domain of the abstract into the real world of criminal investigation.

Within and at the end of each chapter, the student will encounter Quick Reviews and a Chapter Summary that recap all of the major points of the chapter. The end-of-chapter summary is followed by review questions, as well as application and critical thinking exercises designed to have the reader further explore the chapter’s content and its significance. Most chapters also include Laboratory Experiments, which have students apply the Next Generation Science Standards to a crime-scene activity. In some chapters, virtual crime scene exercises enable the reader to move through various types of crime scenes while identifying and collecting physical evidence.
Acknowledgments

I am most appreciative of the contribution that Lieutenant Andrew (Drew) Donofrio of New Jersey’s Bergen County Prosecutor’s Office made to Forensic Science. I was fortunate to find in Drew a contributor who not only possesses extraordinary skill, knowledge, and hands-on experience with computer forensics, but who was able to combine those attributes with sophisticated communication skills. Likewise, I was fortunate to have Dr. Peter Stephenson contribute to this book on the subject of mobile forensics. He brings skills as a cybercriminologist, author, and educator in digital forensics.

Sarah A. Skorupsky-Borg, MSFS, invested an extraordinary amount of time and effort in preparing an accompanying supplement to this text: Basic Laboratory Exercises for Forensic Science. Her skills and tenacity in carrying out this task are acknowledged and greatly appreciated.

Many people provided assistance and advice in the preparation of this book. Many faculty members, colleagues, and friends have read and commented on various portions of the text. I would like to acknowledge the contributions of Anita Wonder, Robert J. Phillips, Norman H. Reeves, Jeffrey C. Kercheval, Robert Thompson, Roger Ely, Jose R. Almirall, Michael Malone, Ronald Welsh, Ken Radwill, David Pauly, Jan Johnson, Natalie Borgan, Dr. Barbara Needell, Robin D. Williams, Peter Diaczuk, and Jacqueline E. Joseph. I’m appreciative of the contributions, reviews, and comments that Dr. Claus Speth, Dr. Mark Taff, Dr. Elizabeth Laposata, Thomas P. Mauriello, and Michelle D. Miranda provided during the preparation of Chapter 4, “Death Investigation.”

I’m appreciative of the efforts of Brenda Wolpa and Jill Christman in preparing chapter experiments that support the Next Generation Science Standards.

Thanks to the reviewers of the third edition for their feedback: Debbie Allen, Maury High School; Jennifer Bisch, St. Joseph’s Academy; Tommy Decker, Thomas Jefferson High School; Aimee Fdyuk, Hillsboro High School; Terry Howerton, Atkins High School; Derrick Leach, Mid-East Career and Technology; Keith Miessau, Lake Mary High School; Scott Rubins, New Rochelle High School; and Brenda Wolpa, Salpointe Catholic High School. The following reviewers for the second edition provided insightful and helpful critiques of the manuscript: Kate Allender, Redmond High School; Jill Christman, Canyon Del Oro High School; Charles Fanning, La Habra High School; John Gomola, Sterling Heights High School; Lance Goodlock, Sturgis High School; Dorothy Harris, Quince Orchard High School; Christine Leventhal, Darien High School; Chrystal Lippencott, Parker High School; Mary Monte, Eastern Technical High School; Kim McNamara, Oak Lawn Community High School; Randy Neider, Reading High School; Stephanie Niedermeyer, Wayne Memorial High School; Baokhanh Paton, Granby Memorial High School; and Jay Phillips, Westside High School.

I also thank the following reviewers of the first edition: Craig Anderson, Galt High School; Margaret Barthel, Ph.D., Freedom High School; Thomas J. Costello, High Point Regional High School; Thomas Donley, The Hotchkiss School; Shelly Duk, Walled Lake Central High School; Mark Feil, Glasgow High School; Myra Frank, Marjory Stoneman Douglas High School; Jim Hurley, Waverly-Shell Rock Community Schools; Lisa Kiann, River Valley High School; Mary Monte, Eastern Technical High School; Mary J. Monte, Woodlawn High School; Kevin Mugridge, Bishop Timon St. Jude High School; Barbara Olsen, Rocky Hill High School; Bruce Parce, Albert Einstein High School; Tod Suttle, Mayfair Middle/High School; Danielle DuChesne Thompson, Mariner High School; and Penny Wolkow, Oakland Mills High School.

The assistance and research efforts of Pamela Cook, Gonul Turhan, and Michelle Tetreault were invaluable and are an integral part of this text. The transformation of Criminalistics from a college text into this edition is the result in large part of the editorial skills of John Haley, who reorganized substantial portions of the text and rewrote end-of-chapter questions.

Finally, I am grateful to those law enforcement agencies, government agencies, private individuals, and equipment manufacturers cited in the text for contributing their photographs and illustrations.
About the Author

Richard Saferstein, Ph.D., retired in 1991 after serving twenty-one years as the Chief Forensic Scientist of the New Jersey State Police Laboratory, one of the largest crime laboratories in the United States. He currently acts as a consultant for attorneys and the media in the area of forensic science. During the O. J. Simpson criminal trial, Dr. Saferstein provided extensive commentary on forensic aspects of the case for the Rivera Live show, the E! television network, ABC radio, and various radio talk shows. Dr. Saferstein holds degrees from the City College of New York and earned his doctorate degree in chemistry in 1970 from the City University of New York. From 1972 to 1991, he taught an introductory forensic science course in the criminal justice programs at The College of New Jersey and Ocean County College. These teaching experiences played an influential role in Dr. Saferstein’s authorship in 1977 of the widely used introductory textbook Criminalistics: An Introduction to Forensic Science, currently in its eleventh edition. Saferstein’s basic philosophy in writing Criminalistics is to make forensic science understandable and meaningful to the nonscience reader while giving the reader an appreciation for the scientific principles that underlie the subject.

Dr. Saferstein has authored or co-authored more than forty-four technical papers covering a variety of forensic topics. Dr. Saferstein has authored Basic Laboratory Exercises for Forensic Science (Prentice Hall, 2011) and co-authored Lab Manual for Criminalistics (Prentice Hall, 2015). He has also edited two editions of the widely used professional reference books Forensic Science Handbook, Volume 1 (Prentice Hall, 2002), Forensic Science Handbook, Volume 2 (Prentice Hall, 2005), and Forensic Science Handbook, Volume 3 (Prentice Hall, 2009). Dr. Saferstein is a member of the American Chemical Society, the American Academy of Forensic Sciences, the Canadian Society of Forensic Scientists, the International Association for Identification, the Northeastern Association of Forensic Scientists, and the Society of Forensic Toxicologists.

In 2006, Dr. Saferstein received the American Academy of Forensic Sciences Paul L. Kirk award for distinguished service and contributions to the field of criminalistics.
Handbook of Forensic Services—FBI

The Handbook of Forensic Services provides guidance and procedures for the safe and efficient methods of collecting, preserving, packaging, and shipping evidence, and describes the forensic examinations performed by the FBI’s Laboratory Division and Operational Technology Division.

The contents of the Handbook are to be found by the reader on either the iPhone app entitled “FBI Handbook” or the Android app entitled “Handbook of Forensic Services.” The handbook can also be found online: www.fbi.gov/about-us/lab/handbook-of-forensic-services-pdf.
Next Generation Science Standards* Overview

The Next Generation Science Standards (NGSS) provide an important opportunity to improve not only science education but also student achievement. Based on the Framework for K–12 Science Education, the NGSS are intended to reflect a new vision for American science Education.

The forensic science course, being an integrated science, is not intended to directly address specific NGSS expectations. However, it incorporates the science and engineering practices and crosscutting concepts from the Framework for K–12 Science Education, which are the foundation for the NGSS standards.

The Framework identifies seven crosscutting concepts and eight science and engineering practices. The seven crosscutting concepts bridge disciplinary boundaries, uniting core ideas throughout the fields of science and engineering. The seven crosscutting concepts are as follows.

1. **Patterns**—Observed patterns of forms and events guide organization and classification, and they prompt questions about relationships and the factors that influence them.

2. **Cause and effect: Mechanism and explanation**—Events have causes, sometimes simple, sometimes multifaceted. A major activity of science is investigating and explaining causal relationships and the mechanisms by which they are mediated. Such mechanisms can then be tested across given contexts and used to predict and explain events in new contexts.

3. **Scale, proportion, and quantity**—In considering phenomena, it is critical to recognize what is relevant at different measures of size, time, and energy and to recognize how changes in scale, proportion, or quantity affect a system’s structure or performance.

4. **Systems and system models**—Defining the system under study—specifying its boundaries and making explicit a model of that system—provides tools for understanding and testing ideas that are applicable throughout science and engineering.

5. **Energy and matter: Flows, cycles, and conservation**—Tracking fluxes of energy and matter into, out of, and within systems helps one understand the systems’ possibilities and limitations.

6. **Structure and function**—The way in which an object or living thing is shaped and its substructure determine many of its properties and functions.

7. **Stability and change**—For natural and built systems alike, conditions of stability and determinants of rates of change or evolution of a system are critical elements of study.

The eight practices of science and engineering identified as essential for all students to learn are listed below:

1. Asking questions (for science) and defining problems (for engineering)
2. Developing and using models
3. Planning and carrying out investigations
4. Analyzing and interpreting data
5. Using mathematics and computational thinking
6. Constructing explanations (for science) and designing solutions (for engineering)
7. Engaging in argument from evidence
8. Obtaining, evaluating, and communicating information

Next Generation Science Standards is a registered trademark of Achieve. Neither Achieve nor the lead states and partners that developed the Next Generation Science Standards was involved in the production of, and does not endorse, this product.
Welcome... to the exciting third edition of *Forensic Science: An Introduction*. Richard Saferstein has carefully adapted and updated his classic *Criminalistics: An Introduction to Forensic Science* text to create a comprehensive program designed specifically for high school students and teachers.

Accessible Text and Motivational 4-Color Presentation

The layout and design make learning forensic science even more motivating and exciting.

Students live in a visual world, and the functional use of full color conveys forensic science to today's students. Over 150 full-color photos and illustrations motivate students to read.

Chapter Openers

Each chapter opens with a real-life case study and stunning visual that captures students' interest and brings content to life.

Learning Objectives help students focus on the key takeaways for that chapter.

National Science Education Standards align with the chapter content and highlight the multidisciplinary nature of forensic science.
Dimensional Illustrations

The full-color art program helps students better understand key forensics concepts.

Open and Accessible Design

Design elements bring the course content to life and provide visual cues to guide student reading.

Key Terms

Forensic-specific vocabulary is highlighted in the text and defined in the margins.
Engaging Case Files

Linked to the chapter material, the Case File feature boxes provide students with quick and pertinent facts about real forensic cases.

A 53-year-old man was walking his dog in the early morning hours. He was struck and killed by an unknown vehicle and later found lying in the roadway. The victim's stiletto heels were also removed, and his pants had been pulled down to expose his underwear. A gold metallic painted plastic fragment recovered from the scene and the victim's clothing were submitted to the Virginia Department of Forensic Science for analysis.

A gold metallic painted plastic fragment recovered from the scene and the victim's clothing were submitted to the Virginia Department of Forensic Science for analysis. The color of the primer surface layer was similar to that typically associated with some Fords. Subsequent spectral searches in the Paint Data Query (PDQ) database indicated that the paint most likely originated from a 1990 or newer Ford. The most discriminating aspect of this paint was the unusual-looking gold metallic topcoat color. A search of automotive paint books yielded only one color that closely matched the paint recovered in the case. The color, Aztec Gold Metallic, was determined to have been used only on 1997 Ford Mustangs.

The results of the examination were relayed via telephone to the investigating detective. The investigating detective quickly determined that only 11,000 1997 Ford Mustangs were produced in Aztec Gold Metallic. Only two of these vehicles were registered, and both had been previously stopped in the jurisdiction of the offense. Ninety minutes after the make, model, and year information was relayed to the investigator, he called back to say he had located a suspect vehicle. Molding from the vehicle and known paint samples were submitted for comparison. Subsequent laboratory comparison showed that the painted plastic piece recovered from the scene could be physically fitted together with the molding, and paint recovered from the victim's clothing was consistent with paint samples taken from the suspect vehicle.

Source: Brenda Christy, Virginia Department of Forensic Science

Quick Labs

Quick Lab: Luminol Test

Materials:
- Luminol (powder needs to be mixed with water)
- Spray bottle
- Simulated blood
- Piece of wood or flooring
- UV light source

Procedure:
Apply some blood to the wood or flooring. Then try to completely clean it, as if you were trying to cover up a crime. If the teacher does not have the luminol mixed for you, follow instructions on how to mix it. Using the spray bottle, apply some luminol to the wood or flooring that you cleaned. Keep the room dark for this step. You may shine the UV light on the area where you sprayed the luminol; this may help if you do not see a reaction right away.

Follow-Up Questions:
1. Did you observe any reaction when the room was dark? When you shined the UV light on the wood or flooring? If so, what did you observe?
2. How does luminol detect bloodstains?
3. What is luminescence?
Application and Critical Thinking

Each chapter contains many activities designed to encourage application of critical thinking skills as they pertain to everyday life.

Chapter Review and Assessment

Each chapter provides a point-by-point summary of key concepts, with explanations that reinforce the materials covered.

Application and Critical Thinking

1. Indicate the phase of growth of each of the following hairs:
 a. The root is club-shaped
 b. The root bulb is flame-shaped
 c. The root is elongated

2. A hair expert is analyzing a questioned hair root. The ends of the hair break naturally at the root bulb. Approximately three years have passed before the examination. Estimate the time since the hair originated.

3. Following are descriptions of questioned hairs based on these observations, indicate the likely race of the person from whom the hair originated:
 a. Evenly distributed, fine pigmentation
 b. Continuous medullation
 c. Dense, uneven pigmentation
 d. Wavy with a round cross-section

4. Criminalist Pete Evett is collecting fiber evidence from a murder scene. He notices fibers on the victim’s shirt and trousers, so he places both of these items of clothing in a plastic bag. He also sees fibers on a sheet near the victim, so he rolls up the sheet and places it in separate plastic bags. Noticing fibers adhering to the windowsill from which the attacker gained entrance, Pete carefully removes them with his fingers and places them in a regular envelope. What mistakes, if any, did Pete make while collecting this evidence?

5. For each of the following human hair samples, indicate the medulla pattern present.

 A. ____________________
 B. ____________________
 C. ____________________
 D. ____________________
 E. ____________________
 F. ____________________
 G. ____________________
 H. ____________________
 I. ____________________

Chapter Review

- Trace elements are small quantities of elements present in concentrations of less than 1 percent. They provide “invisible” markers that may establish the source of a material or provide additional points for comparison.

- The three most important subatomic particles are the proton, neutron, and electron. The proton has a positive electrical charge, the neutron has no electrical charge, and the electron has a negative electrical charge.

- Atomic number indicates the number of protons in the nucleus of an atom. Atomic mass refers to the total number of protons and neutrons in a nucleus.

- A nucleus is an atom differing from other atoms of the same element in the number of neutrons in its nucleus.

- Radioactivity is the emission of high-energy subatomic particles that accompanies the spontaneous disintegration of the nucleus of an unstable isotope. The three types of radiation are alpha particle rays, beta particle rays, and gamma rays.

- In neutron activation analysis, a sample is bombarded with neutrons and the energy of the gamma rays emitted by the activated isotopes is measured. The gamma rays of each element are associated with characteristic energy values that help identify the specific element that produces them.

- Paint spread onto a surface dries into a hard film that is best described as consisting of pigments and additives suspended in the binder.

- Questioned and known paint specimens are best compared side by side under a stereoscopic microscope for color, surface texture, and color layer sequence.

- Pyrolysis gas chromatography and infrared spectrophotometry are used to distinguish most paint binder compositions.

- Emission spectroscopy and inductively coupled plasma techniques available for determining the elemental compositions of paint pigments.

- PDQ (Paint Data Query) is a computerized database that allows an analyst to obtain information on paints related to automobile make, model, and year.

- A side-by-side visual comparison of the color and texture of soil specimens provides a way to distinguish soil that originates from different locations.

- Minerals are naturally occurring crystalline solids found in soil. Their physical properties—the example, color, geometric shape, density, and refractive index or birefringence—are useful for characterizing soils.
New to This Edition

• New, enhanced, and current Case Files feature that links the content to real-world crime cases.
• New chapters on Death Investigation and Mobile Device Forensics.
• New end-of-chapter Laboratory Experiments that support Next Generation Science Standards.
• New photo program.

Student and Teacher Supplements

Basic Laboratory Exercises for Forensic Science
The Basic Laboratory Exercises workbook brings the real world of forensic science into the classroom with hands-on activities from fingerprinting to bloodstain analysis, and from forensic entomology to forensic anthropology.

MyCrimeLab with Pearson eText
This is an online supplement that offers book-specific learning objectives, chapter summaries, flashcards, WebExtras, practice tests, and more to aid student learning and comprehension. In addition, the teacher resources for Forensic Science, 3e, are also included in this online supplement. These include the Annotated Teacher’s Edition, videos, PowerPoints, and testing files. Access to MyCrimeLab with Pearson eText is provided upon adoption. See below for teacher and student access information.

Preview and Adoption Access
Upon textbook purchase, students and teachers are granted access to MyCrimeLab with Pearson eText. High school teachers can obtain preview or adoption access for MyCrimeLab in one of the following ways:

Preview Access
• Teachers can request preview access by visiting PearsonSchool.com/Access_Request. Select Initial Access then using Option 2, select your discipline and title from the drop-down menu and complete the online form. Preview Access information will be sent to the teacher via e-mail.
Adoption Access

• With the purchase of a textbook program that offers a media resource, a Pearson Adoption Access Card, with student and teacher codes and a complete Instructor’s Manual, will be delivered with your textbook purchase. ISBN: 978-0-13-354087-1

OR

• Visit PearsonSchool.com/Access_Request. Select Initial Access then using Option 3, select your discipline and title from the drop-down menu and complete the online form. Access information will be sent to the teacher via e-mail.

Students, ask your teacher for access.